3.73 \(\int \frac{(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{(a+a \sin (e+f x))^3} \, dx\)

Optimal. Leaf size=110 \[ -\frac{a^2 c^2 (A-B) \cos ^5(e+f x)}{5 f (a \sin (e+f x)+a)^5}+\frac{2 B c^2 \cos (e+f x)}{f \left (a^3 \sin (e+f x)+a^3\right )}+\frac{B c^2 x}{a^3}-\frac{2 B c^2 \cos ^3(e+f x)}{3 f (a \sin (e+f x)+a)^3} \]

[Out]

(B*c^2*x)/a^3 - (a^2*(A - B)*c^2*Cos[e + f*x]^5)/(5*f*(a + a*Sin[e + f*x])^5) - (2*B*c^2*Cos[e + f*x]^3)/(3*f*
(a + a*Sin[e + f*x])^3) + (2*B*c^2*Cos[e + f*x])/(f*(a^3 + a^3*Sin[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.264867, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2967, 2859, 2680, 8} \[ -\frac{a^2 c^2 (A-B) \cos ^5(e+f x)}{5 f (a \sin (e+f x)+a)^5}+\frac{2 B c^2 \cos (e+f x)}{f \left (a^3 \sin (e+f x)+a^3\right )}+\frac{B c^2 x}{a^3}-\frac{2 B c^2 \cos ^3(e+f x)}{3 f (a \sin (e+f x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2)/(a + a*Sin[e + f*x])^3,x]

[Out]

(B*c^2*x)/a^3 - (a^2*(A - B)*c^2*Cos[e + f*x]^5)/(5*f*(a + a*Sin[e + f*x])^5) - (2*B*c^2*Cos[e + f*x]^3)/(3*f*
(a + a*Sin[e + f*x])^3) + (2*B*c^2*Cos[e + f*x])/(f*(a^3 + a^3*Sin[e + f*x]))

Rule 2967

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rule 2859

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(2*m +
p + 1)), x] + Dist[(a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^
(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify[
m + p], 0]) && NeQ[2*m + p + 1, 0]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{(a+a \sin (e+f x))^3} \, dx &=\left (a^2 c^2\right ) \int \frac{\cos ^4(e+f x) (A+B \sin (e+f x))}{(a+a \sin (e+f x))^5} \, dx\\ &=-\frac{a^2 (A-B) c^2 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}+\left (a B c^2\right ) \int \frac{\cos ^4(e+f x)}{(a+a \sin (e+f x))^4} \, dx\\ &=-\frac{a^2 (A-B) c^2 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}-\frac{2 B c^2 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}-\frac{\left (B c^2\right ) \int \frac{\cos ^2(e+f x)}{(a+a \sin (e+f x))^2} \, dx}{a}\\ &=-\frac{a^2 (A-B) c^2 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}-\frac{2 B c^2 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}+\frac{2 B c^2 \cos (e+f x)}{f \left (a^3+a^3 \sin (e+f x)\right )}+\frac{\left (B c^2\right ) \int 1 \, dx}{a^3}\\ &=\frac{B c^2 x}{a^3}-\frac{a^2 (A-B) c^2 \cos ^5(e+f x)}{5 f (a+a \sin (e+f x))^5}-\frac{2 B c^2 \cos ^3(e+f x)}{3 f (a+a \sin (e+f x))^3}+\frac{2 B c^2 \cos (e+f x)}{f \left (a^3+a^3 \sin (e+f x)\right )}\\ \end{align*}

Mathematica [B]  time = 0.684357, size = 272, normalized size = 2.47 \[ \frac{(c-c \sin (e+f x))^2 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (24 (A-B) \sin \left (\frac{1}{2} (e+f x)\right )+2 (3 A-43 B) \sin \left (\frac{1}{2} (e+f x)\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^4+4 (3 A-8 B) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3-8 (3 A-8 B) \sin \left (\frac{1}{2} (e+f x)\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^2-12 (A-B) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+15 B (e+f x) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^5\right )}{15 a^3 f (\sin (e+f x)+1)^3 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2)/(a + a*Sin[e + f*x])^3,x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(24*(A - B)*Sin[(e + f*x)/2] - 12*(A - B)*(Cos[(e + f*x)/2] + Sin[(e +
f*x)/2]) - 8*(3*A - 8*B)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + 4*(3*A - 8*B)*(Cos[(e + f*
x)/2] + Sin[(e + f*x)/2])^3 + 2*(3*A - 43*B)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^4 + 15*B*(
e + f*x)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)*(c - c*Sin[e + f*x])^2)/(15*a^3*f*(Cos[(e + f*x)/2] - Sin[(e
 + f*x)/2])^4*(1 + Sin[e + f*x])^3)

________________________________________________________________________________________

Maple [B]  time = 0.123, size = 249, normalized size = 2.3 \begin{align*} 2\,{\frac{B{c}^{2}\arctan \left ( \tan \left ( 1/2\,fx+e/2 \right ) \right ) }{f{a}^{3}}}+16\,{\frac{A{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{4}}}-16\,{\frac{B{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{4}}}-2\,{\frac{A{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }}+2\,{\frac{B{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }}-{\frac{32\,A{c}^{2}}{5\,f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-5}}+{\frac{32\,B{c}^{2}}{5\,f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-5}}-16\,{\frac{A{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{3}}}+{\frac{32\,B{c}^{2}}{3\,f{a}^{3}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-3}}+8\,{\frac{A{c}^{2}}{f{a}^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e))^3,x)

[Out]

2/f*c^2/a^3*B*arctan(tan(1/2*f*x+1/2*e))+16/f*c^2/a^3/(tan(1/2*f*x+1/2*e)+1)^4*A-16/f*c^2/a^3/(tan(1/2*f*x+1/2
*e)+1)^4*B-2/f*c^2/a^3/(tan(1/2*f*x+1/2*e)+1)*A+2/f*c^2/a^3/(tan(1/2*f*x+1/2*e)+1)*B-32/5/f*c^2/a^3/(tan(1/2*f
*x+1/2*e)+1)^5*A+32/5/f*c^2/a^3/(tan(1/2*f*x+1/2*e)+1)^5*B-16/f*c^2/a^3/(tan(1/2*f*x+1/2*e)+1)^3*A+32/3/f*c^2/
a^3/(tan(1/2*f*x+1/2*e)+1)^3*B+8/f*c^2/a^3*A/(tan(1/2*f*x+1/2*e)+1)^2

________________________________________________________________________________________

Maxima [B]  time = 1.57486, size = 1531, normalized size = 13.92 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

2/15*(B*c^2*((95*sin(f*x + e)/(cos(f*x + e) + 1) + 145*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 75*sin(f*x + e)^3
/(cos(f*x + e) + 1)^3 + 15*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 22)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) +
 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x
+ e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 15*arctan(sin(f*x + e)/(cos(f*x + e)
+ 1))/a^3) - A*c^2*(20*sin(f*x + e)/(cos(f*x + e) + 1) + 40*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 30*sin(f*x +
 e)^3/(cos(f*x + e) + 1)^3 + 15*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 7)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x +
e) + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(
f*x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) - 2*A*c^2*(5*sin(f*x + e)/(cos(f*x
+ e) + 1) + 10*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) + 1) + 10*a^3*
sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x + e)^4/(cos(f
*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 4*B*c^2*(5*sin(f*x + e)/(cos(f*x + e) + 1) + 10*si
n(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) + 1) + 10*a^3*sin(f*x + e)^2/(c
os(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 +
a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 6*A*c^2*(5*sin(f*x + e)/(cos(f*x + e) + 1) + 5*sin(f*x + e)^2/(cos(
f*x + e) + 1)^2 + 5*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e) + 1) + 10
*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*x + e)^4/(
cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) - 3*B*c^2*(5*sin(f*x + e)/(cos(f*x + e) + 1) +
5*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 5*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 1)/(a^3 + 5*a^3*sin(f*x + e)/(
cos(f*x + e) + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 +
5*a^3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5))/f

________________________________________________________________________________________

Fricas [B]  time = 1.74236, size = 656, normalized size = 5.96 \begin{align*} -\frac{60 \, B c^{2} f x -{\left (15 \, B c^{2} f x -{\left (3 \, A - 43 \, B\right )} c^{2}\right )} \cos \left (f x + e\right )^{3} - 12 \,{\left (A - B\right )} c^{2} -{\left (45 \, B c^{2} f x -{\left (9 \, A + 11 \, B\right )} c^{2}\right )} \cos \left (f x + e\right )^{2} + 6 \,{\left (5 \, B c^{2} f x -{\left (A - 11 \, B\right )} c^{2}\right )} \cos \left (f x + e\right ) +{\left (60 \, B c^{2} f x + 12 \,{\left (A - B\right )} c^{2} -{\left (15 \, B c^{2} f x +{\left (3 \, A - 43 \, B\right )} c^{2}\right )} \cos \left (f x + e\right )^{2} + 6 \,{\left (5 \, B c^{2} f x +{\left (A + 9 \, B\right )} c^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{15 \,{\left (a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} - 2 \, a^{3} f \cos \left (f x + e\right ) - 4 \, a^{3} f +{\left (a^{3} f \cos \left (f x + e\right )^{2} - 2 \, a^{3} f \cos \left (f x + e\right ) - 4 \, a^{3} f\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

-1/15*(60*B*c^2*f*x - (15*B*c^2*f*x - (3*A - 43*B)*c^2)*cos(f*x + e)^3 - 12*(A - B)*c^2 - (45*B*c^2*f*x - (9*A
 + 11*B)*c^2)*cos(f*x + e)^2 + 6*(5*B*c^2*f*x - (A - 11*B)*c^2)*cos(f*x + e) + (60*B*c^2*f*x + 12*(A - B)*c^2
- (15*B*c^2*f*x + (3*A - 43*B)*c^2)*cos(f*x + e)^2 + 6*(5*B*c^2*f*x + (A + 9*B)*c^2)*cos(f*x + e))*sin(f*x + e
))/(a^3*f*cos(f*x + e)^3 + 3*a^3*f*cos(f*x + e)^2 - 2*a^3*f*cos(f*x + e) - 4*a^3*f + (a^3*f*cos(f*x + e)^2 - 2
*a^3*f*cos(f*x + e) - 4*a^3*f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**2/(a+a*sin(f*x+e))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.21275, size = 215, normalized size = 1.95 \begin{align*} \frac{\frac{15 \,{\left (f x + e\right )} B c^{2}}{a^{3}} - \frac{2 \,{\left (15 \, A c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} - 15 \, B c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} - 60 \, B c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + 30 \, A c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - 170 \, B c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - 100 \, B c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 3 \, A c^{2} - 23 \, B c^{2}\right )}}{a^{3}{\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 1\right )}^{5}}}{15 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

1/15*(15*(f*x + e)*B*c^2/a^3 - 2*(15*A*c^2*tan(1/2*f*x + 1/2*e)^4 - 15*B*c^2*tan(1/2*f*x + 1/2*e)^4 - 60*B*c^2
*tan(1/2*f*x + 1/2*e)^3 + 30*A*c^2*tan(1/2*f*x + 1/2*e)^2 - 170*B*c^2*tan(1/2*f*x + 1/2*e)^2 - 100*B*c^2*tan(1
/2*f*x + 1/2*e) + 3*A*c^2 - 23*B*c^2)/(a^3*(tan(1/2*f*x + 1/2*e) + 1)^5))/f